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We review a representation of Hubbard-like models that is based on auxiliary pseudospin variables. These
pseudospins refer to the local charge modulo two in the original model and display a local Z2 gauge freedom.
We discuss the associated mean-field theory in a variety of different contexts which are related to the problem
of the interaction-driven metal-insulator transition at half-filling including Fermi surface deformation and
spectral features beyond the local approximation. Notably, on the mean-field level, the Hubbard bands are
derived from the excitations of an Ising model in a transverse field and the quantum critical point of this model
is identified with the Brinkman-Rice criticality of the almost localized Fermi liquid state. Nonlocal correlations
are included using a cluster mean-field approximation and the Schwinger boson theory for the auxiliary
quantum Ising model.
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I. INTRODUCTION

Strong correlation physics is a central ingredient for di-
verse solid-state systems including the high-Tc cuprates,1

other transition metal oxides2 or unconventional
superconductors3 as well as fractional quantum Hall states.4

Related physics is currently also discussed in the context of
ultracold atoms in optical lattices.5 Strong interactions can
give rise to a variety of unusual quantum phases including
ordered phases in spin, charge, and orbital degrees of free-
dom, as well as miscellaneous exotic liquid phases.6 The
complexity of these many-body systems lies in the funda-
mental dichotomy between real space �localization� and mo-
mentum space �delocalization� in combination with the re-
strictions on the Hilbert space which are enforced by the
strong interaction among the particles. Only a few rigorous
results are available for comparable “simple” models such as
the Hubbard or the t-J Hamiltonian in more than one7,8 or
less than infinite dimensions.9,10 Hence, there is a consider-
able amount of ongoing work attempting to reach the physi-
cally most relevant limit of two or three dimensions.11

Thereby, the classical problem of the Mott metal-insulator
transition12 plays a key role and its nature in various systems
is still actively debated. Recent examples include the orbital-
selective Mott transition in multiorbital systems such as
Ca2−xSrxRuO4,13 the problem of momentum space differen-
tiation related to the pseudogap phenomena in cuprates14 or
the paramagnetic metal-insulator �spin liquid� transition in
frustrated geometries such as in the organic compound
�-�BEDT-TTF�2Cu2�CN�3.15

Widely used theoretical approaches to tackle these prob-
lems are slave-particle methods because they provide pow-
erful tools to deal with the restrictions imposed on the Hil-
bert space due to strong correlations. They have been
pioneered in the context of quantum magnets,16,17 magnetic
impurities in metals18–20 and doped Mott insulators.21,22 The
basic idea is to represent local degrees of freedom with the
help of auxiliary degrees of freedom in an enlarged Hilbert
space. However, in order to have a faithful representation,

these auxiliary degrees of freedom obey certain constraints
and are not independent �although in some cases they survive
as “real” particles�1 but are “enslaved”—hence, the name. In
practice, the starting point is usually a mean-field state in the
enlarged Hilbert space obeying a set of self-consistency
equations. This allows for a semianalytical and nonperturba-
tive treatment of correlation effects.

In this article, we make contact with a particular class of
slave-particle representations for Hubbard-like models. They
share a simple physical picture of the interaction-driven para-
magnetic metal-insulator transition which dates back to early
works of Gutzwiller23 and Brinkman and Rice24 and others25

who introduced the notion of an “almost localized Fermi
liquid” to characterize the metallic state close to the Mott
transition. In particular, the transition to the localized �insu-
lating� state is signaled by a diverging effective mass. In
infinite dimensions, this picture can be put on a more firm
ground10 since correlations are strictly local but in two or
three dimensions nonlocal correlations can lead to different
conclusions. Our approach is closely related to the four-
boson method introduced by Kotliar and Ruckenstein
�KR�,26 and its extensions.27–34 In these approaches it is,
however, not straightforward to include fluctuations of the
mean fields and the high-energy �incoherent� part of the
single-particle spectrum. Most studies are therefore restricted
to the low-energy �coherent� part of the one-particle spec-
trum �but note also Refs. 35–39�. An elegant formulation
which can overcome some of these shortcomings has been
given by Florens and Georges40,41 in terms of a slave-rotor
representation. In this formulation, the phase fluctuations of
the rotors give rise to the incoherent spectral features in the
single-particle spectrum. Moreover, it also yields a closer
connection to the superfluid to insulator transition in the
Bose-Hubbard model.42 We also note the slave-spin repre-
sentation of de’Medici and co-workers43 which has been in-
troduced to study the orbital-selective Mott transition in a
two-band Hubbard model and follows a similar spirit.

We contribute to these different approaches by reviewing
an alternative slave-spin formulation which has recently been

PHYSICAL REVIEW B 81, 155118 �2010�

1098-0121/2010/81�15�/155118�14� ©2010 The American Physical Society155118-1

http://dx.doi.org/10.1103/PhysRevB.81.155118


applied to the study of dynamically generated double occu-
pancy in cold atomic Fermi systems.44 The advantage of our
formulation is that it reduces the complexity of the represen-
tation to a minimum. The gauge freedom is only Z2 and the
auxiliary quantum model, which describes the high-energy
degrees of freedom in the mean-field approximation, is given
by the transverse field Ising model. Furthermore, in the sim-
plest treatment, we exactly recover the result of the
Gutzwiller approximation applied to the metal-insulator tran-
sition.

The outline is as follows: we first introduce the general
formulation of the problem using slave-pseudospin variables
in Sec. II. We then discuss the mean-field approximation
which consists of decoupling pseudospin and fermion de-
grees of freedom in Sec. III. Furthermore, in Secs. IV and V
we investigate the consequences of two subsequent approxi-
mations made for the pseudospin problem: �i� the single-site
mean-field approximation and �ii� the use of Schwinger
bosons to treat the fluctuations around the �renormalized�
classical ground state. In Sec. VI we discuss the importance
to include an averaged local constraint.

II. SLAVE-SPIN FORMULATION

We begin this section by introducing the general frame-
work of the slave-spin formulation we want to utilize in the
study of the Hubbard model, Eq. �1�. We define a represen-
tation of physical operators in an enlarged local Hilbert space
and we analyze the additional local symmetry which is in-
troduced by this procedure. The subsequent discussion of the
noninteracting case allows us to set the stage for the mean-
field study in the remainder of the paper. We conclude this
section by commenting on Elitzur’s theorem �stating the im-
possibility to break the aforementioned local symmetry� and
the restrictions it poses on the interpretation of the mean-
field results discussed later.

For concreteness, we shall consider the single-band Hub-
bard model written in the form

H = − �
i,j,�

tijci�
† cj� +

U

2 �
i

�n̂i − 1�2. �1�

The hopping amplitude between sites i and j is denoted by tij
and U is the onsite repulsion. ci�

�†� destroys �creates� an elec-
tron at site i with spin � and n̂i=��ci�

† ci�. Throughout the
paper we work at half-filling, thus assuming �n̂i�=1.

We now introduce a representation of the local physical
states which is based on auxiliary pseudospin variables, see
Fig. 1. Thus, let us introduce a pseudospin I with eigenstates

Iz�� � = �
1

2
�� � , �2�

encoding doubly occupied and empty sites ��+�� and singly
occupied sites ��−��. Consequently, the eigenvalue of Iz refers
to the presence �−1 /2� or absence �+1 /2� of a local magnetic
moment. In addition, auxiliary Fermi creation and annihila-
tion operators f�

�†� are introduced to preserve the canonical
anticommutation relations �see Appendix for a connection to
earlier work�. The physical creation �annihilation� operator
of the original model is then represented as

c�
�†� � 2Ixf�

�†�. �3�

The physical states in the enlarged local Hilbert space are

�e� = �+ ��0�, �p�� = �− ����, �d� = �+ ��2� , �4�

where �0� is the vacuum of the f fermions,

��� = f�
† �0� and �2� = f↑

†f↓
†�0� .

The states �4� are pictorially shown in Fig. 1. In the lattice
system the above definitions are generalized for each lattice
site i. The physical subspace is selected by the requirement
that the local quasiparticle charge modulo two can be repre-
sented by Ii

z as follows:

Ii
z +

1

2
− �ni − 1�2 = 0. �5�

Associated with the constraint �5�, let us define an operator

Qi ª �Ii
z +

1

2
− �ni − 1�2	2

=
1

2
+ Ii

z
1 − 2�ni − 1�2� .

Qi has eigenvalues 0 and 1 and the eigensectors define the
local physical subspace Hi

�0� and its orthogonal complement
Hi

�1�, respectively. Thus, the local Hilbert space Hi is decom-
posed according to

Hi = Hi
�0�

� Hi
�1�.

We have defined

Hi
�q� = ���� � Hi;Qi��� = q���, q = 0,1.

The projection onto the physical subspace can then also be
achieved by imposing for each lattice site

Qi = 0, ∀ i . �6�

As a result, we can write the Hubbard interaction in the
physical subspace solely using pseudospin operators Ii

z and
the original Hamiltonian is represented as

H� = − 4�
i,j,�

tijIi
xIj

xf i�
† f j� +

U

2 �
i
�Ii

z +
1

2
� . �7�

As long as the constraint �6� is fulfilled, the Hamiltonian �7�
is equivalent to the original model �1�. In the following we
often drop the constant term UNs /2 �Ns=number of sites� in
Eq. �7�. Using Qi, the projector onto the physical subspace
takes the form

⊗
original:

pseudospin:

|e〉 |p↑〉 |p↓〉 |d〉

⊗ ⊗⊗
|+〉|0〉 |−〉| ↓〉|−〉| ↑〉 |+〉|2〉

FIG. 1. �Color online� Pictorial illustration of the pseudospin
representation discussed in this article.
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P = �
i

�1 − Qi� , �8�

with P2=P and PH�P is equivalent to the original model
�1�.

A. Gauge structure

In the following section, we will briefly discuss the gauge
freedom introduced by the representation �4�. Although the
gauge structure is not important for the mean-field analysis
outlined in the remainder of this article, it allows us to gain a
deeper understanding of the slave-spin construction.

The gauge group is formed by all local transformations
which leave the local physical annihilation and creation op-
erators ci�

�†�=2Ii
xf i�

�†� �and therefore also H�� invariant. We will
see that the most obvious Z2 transformations

ci� � 2Ii
xf i� = 2�− Ii

x��− f i�� ,

ci�
† � 2Ii

xf i�
† = 2�− Ii

x��− f i�
† � , �9�

are in fact not the most general ones but are part of a larger
U�1� group. Nevertheless, as shown below, the Z2-gauge
transformations �9� are the only ones respecting the mean-
field decomposition and in this sense, the mean-field ansatz
breaks the U�1� gauge symmetry down to Z2.

In order to explicitly derive all possible gauge transforma-
tions we make use of the fact that H� does not mix the
physical subspace with its complement. The generalized lo-
cal charge Qi is therefore a conserved quantity and com-
mutes with H�


Qi,H�� = 0.

A conserved charge Qi arises from a continuous symmetry
Ui��i�=exp�i�iQi� with 0��i	2
. In other words, Qi gen-
erates the local gauge transformations Ui��i� and we con-
clude that there is a local U�1� freedom,

Ui��i�ci�
�†�Ui��i�† = ci�

�†�, �10�

with ci�
�†�=2Ii

xf i�
�†�. Under the action of Ui��i� the pseudofer-

mions transform as

Ui��i�f i�
�†�Ui��i�† = ei�i f i�

�†��1 − Qi� + e−i�i f i�
�†�Qi, �11�

and the pseudospins as

Ui��i�Ii
xUi��i�† = ei�iIi

x�1 − Qi� + e−i�iIi
xQi,

Ui��i�Ii
zUi��i�† = Ii

z. �12�

The transformation relations �11� and �12� allow to explicitly
check the relation �10�.

At this point it is important to recall that the present slave-
spin scheme is a projective construction: a physical state ���
is obtained from a general state ��� of the enlarged Hilbert
space after projection, ���=P���. A different state ����
which is obtained from ��� by a gauge transformation will
give rise to the same physical state ���. �For a related state-
ment in the projective construction of spin liquid phases see,
e.g., Refs. 45 and 46.� This is an intuitive way to understand

the origin of the gauge freedom. In practice, we start from a
mean-field �product� state in pseudospin and pseudofermion
degrees of freedom: ��MF�= ��I��� f�, see Sec. III. Applying
the transformations �11� and �12� to the mean-field Hamilto-
nians �19� and �21� we find that in general only gauge trans-
formations with �i=0 or 
 respect the mean-field product
form. This means that different mean-field states which give
rise to the same physical state are related by gauge transfor-
mations with �i=0 or 
. In this sense, the mean-field ansatz
breaks the U�1� freedom down to the smaller Z2 freedom.
Therefore, we anticipate that the relevant gauge group to
study fluctuations around the mean-field state is Z2. It con-
sists of the following two elements: the identity operator,
idi�Ui��i=0�, and the operator

ui � Ui��i = 
� = �− 1�Qi = 1 − 2Qi. �13�

The action of ui on f i�
�†� and Ii

x is given by

uif i�
�†�ui = − f i�

�†�,

uiIi
xui = − Ii

x.

Obviously, ui promotes the gauge transformations �9�.

B. Noninteracting model U=0

We now turn to the discussion of the noninteracting model

H0� = − 4�
i,j,�

tijIi
xIj

xf i�
† f j�.

The eigenstates of H0� are �at least in principle� exactly
known. This fact allows us to study the action of the projec-
tor P and the role of the local gauge freedom in a more
rigorous manner. Moreover, the noninteracting limit is help-
ful for the interpretation of the mean-field approximation in-
troduced and explored later in this article. In the following
we use arguments which are similar to those given in a dis-
cussion of an exactly solvable spin model on the square lat-
tice in Ref. 47.

Since 
Ii
x ,H0��=0 we choose the eigenstates ��� of H0� �in

the enlarged Hilbert space� as being product states in the
�Ising� pseudospin and fermion degrees of freedom. Explic-
itly, ���= ��������� where Ii

x���=i���, i=�1 /2.
The pseudofermion component ������ is a Slater-
Determinant obtained from the noninteracting model with
effective hopping parameters 4itij j. As an example, let us
choose i=+1 /2 for all sites i. The ground state in this sector
is given by ��0�= ��1 /2���0��1 /2�� where ��0��1 /2�� is the
Fermi sea of the pseudofermions. Clearly, ��0� has the same
energy E0 as the physical ground state

H0���0� = E0��0� .

However, the state ��0� is not an eigenstate of the projector
P and, therefore, is not the physical ground state. Instead, the
�unnormalized� physical ground state is obtained by project-
ing ��0� onto the physical subspace, ��0�=P��0�.48

At this point it is important to note that the local Z2 gauge
freedom �9�, 
H0� ,ui�=0, implies that each energy sector of
H0� is macroscopically degenerate ��2Ns�. In fact, applying
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any combination of local gauge transformations ui to ��0�
yields an eigenstate of H0� with energy E0 but which is �in
general� orthogonal to ��0�. This property allows to obtain
the physical ground state by a particular superposition of
eigenstates in the E0 sector. To see this, let us take a closer
look at the projector. Using Eq. �13� the projector Eq. �8� is
written in the form

P = �
i

1 + ui

2
. �14�

Explicitly, it takes the form

P = �1 + �
i

ui + �
i1	i2

ui1
ui2

+ . . . + �
i

ui�/2Ns. �15�

The action of ui on an eigenstate ��� of H0� can be under-
stood by writing ui in the form

ui = − 2Ii
z
1 − 2�ni − 1�2� . �16�

Therefore, ui changes the sign of i in the pseudospin com-
ponent ���. To understand the action of ui on the pseudof-
ermion part, we expand ������ in the site diagonal occupa-
tion number basis. The form �16� of ui implies that the
components with an empty or doubly occupied site i are
multiplied by −1 while those with a singly occupied site i are
not changed. The resulting wave function is then just the
corresponding eigenstate of a noninteracting model in which
f i�

�†� is replaced by −f i�
�†�. Thus, ui indeed acts as a local gauge

transformation

ui����������� = − ����������� , �17�

where ��= �. . . ,i−1 ,−i ,i+1 , . . .. Hence, owing to the
form �15� of P, the physical ground state ��0�=P��0� is the
equal amplitude superposition of all the degenerate states
which are obtained from ��0� by applying all possible local
gauge transformations.47 The physical subspace is therefore
the gauge invariant subspace.

Note that, although ��0� is not the physical ground state,
it is a representative state of the ground-state energy sector

and, as long as gauge invariant operators Ô=uiÔui are con-

sidered, the expectation values are equal, ��0�Ô��0�
= ��0�Ô��0�.49 Because physical observables are gauge in-
variant we can calculate all physical properties of the nonin-
teracting model by restricting to the sector i=1 /2 for all i
�or to any other fixed configuration ��.

C. Relevance of Elitzur’s theorem

In this paragraph, we briefly comment on Elitzur’s
theorem50 which states the impossibility to spontaneously
break a local symmetry. This implies that thermal averages
� . . . �th in the physical as well as in the enlarged Hilbert space
of operators which are not gauge invariant have to be zero. In
the present case, it implies, for example, that �Ii

x�th=0.51

In the noninteracting limit discussed above this result is
plausible. Let us first consider thermal averages in the en-
larged Hilbert space because each energy sector of H0� is
spanned by a macroscopic number of states involving all

possible pseudospin configurations � the expectation value
of Ii

x averages to zero. Likewise, restricting the thermal av-
erage to the physical subspace, the fact that physical states
are equal amplitude superpositions of all the degenerate
states in the enlarged Hilbert space results in a mutual can-
cellation of positive and negative contributions to �Ii

x�th. In
particular, for the physical ground state we find ��0�Ii

x��0�
=0.

However, the expectation value of a single state in the
enlarged Hilbert space can have a nonvanishing expectation
value ���Ii

x����0. Consider for example the exact eigen-
state ��0� of H0� defined in the previous section. Although
��0�Ii

x��0�=1 /2 we can correctly obtain all the physical ob-
servables in the ground state from ��0� because it is a repre-
sentative state of the physical ground-state sector.

We would like to argue that the mean-field approximation
introduced in the next section should be interpreted in the
same sense. Namely, in the mean-field approximation, we
seek for a product state which approximates one particular
ground state of H� in the enlarged Hilbert space. In fact, for
small U, the mean-field state is continuously connected to
��0�. While this procedure does not yield a systematic ap-
proximation we assume that also for larger U the mean-field
state is sufficiently close to a representative state of the
ground-state energy sector. Moreover, the mean-field ap-
proximation is truly variational: it gives an upper limit for
the true ground-state energy of the original model. Although
a mean-field state will in general have �Ii

x��0, we can use it
to approximately calculate physical ground-state properties.

We think that a similar interpretation of other slave-
particle mean-field theories is appropriate. This would be
consistent with observations made by studying slave-boson
theories in the “radial gauge” where all the exact physical
properties of a toy model have been obtained from the
saddle-point solution of a functional integral.52,53

III. MEAN-FIELD THEORY

Let us now discuss the mean-field theory which results
from the representation introduced in the previous section.
To this end, we assume product states ���= ��I��� f� in pseu-
dospin and fermion degrees of freedom. These states live in
the enlarged Hilbert space. As discussed in the previous sec-
tion, we assume that ��� yields a sufficiently good approxi-
mation to a state in the �macroscopically degenerate� ground-
state sector of H� in the enlarged Hilbert space. We postpone
a discussion of the importance to include the constraint �5�
on average to Sec. VI. Note, however, that the relation

�Ii
z� +

1

2
=

1

Ns

�

�U
�H�� � ���

�

ci�
† ci� − 1�2� , �18�

holds, which leads to the identification of the physical frac-
tion of doubly occupied sites, �ci↑

† ci↑ci↓
† ci↓�, with �Ii

z� /2
+1 /4. This is analogous to earlier mean-field treatments, see
Eq. �A3�. The rational behind the mean-field decoupling is
the fact that we can approximately distinguish two energy
scales. Indeed, as shown below, the characteristic scale of the
pseudospins is �max�U ,Uc� whereas that of the pseudofer-
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mions is �t 
Uc is given in Eq. �27��. Although this obser-
vation together with the insights gained from the noninter-
acting limit justifies to some extent the mean-field
decoupling, it should be considered as a first step on which a
more sophisticated analysis can be based. Nevertheless, on
the present level of approximations we can make close con-
tact to earlier results.

A. Mean-field Hamiltonians

As a consequence of the mean-field decoupling we obtain
two effective Hamiltonians: the fermion problem assumes
the form of a noninteracting tight-binding Hamiltonian,

Hf = ��I�H���I� = − �
i,j,�

gijtij f i�
† f j�, �19�

with the hopping amplitude tij renormalized by a factor

gij = 4�Ii
xIj

x�I. �20�

On the other hand, the pseudospin problem reduces to the
quantum Ising model

HI = �� f�H��� f� = − �
�i,j�
�ijtijIi

xIj
x +

U

2 �
i

Ii
z, �21�

with the transverse field U /2 and the Ising exchange cou-
pling tij�ij where

�ij = 4�
�

��f i�
† f j�� f + c.c� . �22�

The sum over �i , j� in Eq. �21� means summation over all
bonds �i , j� where �ij�0.

The quantum Ising model �21� is a prime example of a
system displaying a quantum critical point at a critical ratio
of the transverse field to the Ising coupling. It separates a
magnetically ordered from a quantum paramagnet.54 Below
we show that this quantum critical point can be identified
with the Brinkman-Rice criticality of an almost localized
Fermi liquid.24,25

Equations �20� and �22� are the two coupled self-
consistency equations to be solved in the mean-field approxi-
mation. We note that there is always the trivial solution gij
=�ij =0 of these equations which is the physical solution in
the atomic limit tij =0. Nontrivial solutions invoke an �ap-
proximate� solution of the quantum Ising model.

The symmetry properties of the original model are con-
served in the mean-field approximations �19� and �21�. For
example, particle number conservation leads to a global U�1�
symmetry for the slave fermion sector 
Eq. �19�� in the usual
manner. Within our approach, the pseudospin sector explic-
itly breaks the pseudospin-rotation symmetry 
Eq. �21��. This
is not related to the particle number, however, because the
pseudospins measure charge only modulo 2. Therefore, the
appearance of terms �Ii

xIj
x �instead of Ii

+Ij
−� do not bias our

system toward a U�1� symmetry broken phase in the mean-
field approximation.

B. Single-particle Green function

Eventually, we are interested in physical �gauge invariant�
quantities such as the single-particle Green function,

G��ri,r j;t� = − i�Tcj��t�ci�
† �0�� ,

where T denotes time ordering. In the mean-field theory, G�
is obtained as

G��ri,r j;t� � 4Bij�t�G�
f �ri,r j;t� , �23�

where we have introduced the auxiliary quantities

Bij�t� = �TIj
x�t�Ii

x�0�� ,

G�
f �ri,r j;t� = − i�Tf j��t�f i�

† �0�� .

In momentum and energy space, the relation �23� translates
into a convolution of B�q ,�� and G�

f �q ,��. It is noteworthy
to mention that the canonical anticommutation relations of
the physical annihilation and creation operators are preserved
on average,

��ci�,cj��
† � = 4�Ii

xIj
x���f i�, f j��

† � = �ij����, �24�

where � . . . � denotes the average over mean-field eigenstates.
As a consequence, the single-particle spectral density is cor-
rectly normalized, as long as the spin-1/2 identity �Ii

x�2

=1 /4 is respected.

IV. MEAN-FIELD APPROXIMATIONS TO THE ISING
MODEL

A straight forward way to study the quantum Ising model
�21� is mean-field approximations. In the simplest case we
consider a single pseudospin coupled to a self-consistent ef-
fective field. This is the local approximation discussed in
Sec. IV A. In order to improve over the local approximation
we consider in Secs. IV B and IV C the pseudospin problem
on a finite cluster; see Refs. 55 and 56 for related works. This
allows us to discuss important aspects of intersite correla-
tions which are absent in the local approximation. In the
following we work in the zero temperature limit and we re-
strict our analysis to translation-invariant and paramagnetic
states.

A. Local approximation

We start with the single-site “cluster.” Noteworthy, on this
level of the approximation, the mean-field self-consistency
�20� and �22� leads to the Brinkman-Rice transition24 ob-
tained in the paramagnetic Gutzwiller approximation of the
Hubbard model.23 To see this, let us introduce the mean mag-
netization �I0

x� and

HI
MF = h�

i

Ĩi
z, h =

Uc

2
�u2 + 4�I0

x�2, �25�

where the pseudospin has been rotated due to the action of
the mean field Uc�I0

x�,

Ĩi = eiIi
y
Ie−iIi

y
, tan  =

2�I0
x�

u
. �26�

In Eqs. �25� and �26� we have used the dimensionless inter-
action parameter u=U /Uc where the energy scale Uc is as-
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sociated with the pseudospin Ising coupling in the single-site
solution

Uc = �
j

tij�ij = − 16�
−D

�F

d�������� 0. �27�

Here, ����� is the noninteracting density of states per spin
with half bandwidth D and �F is the effective Fermi energy
of the pseudofermions.

Self-consistency of �I0
x� yields the pseudospin magnetiza-

tion and from Eq. �20� we obtain the hopping renormaliza-
tion factor as follows:

g = 4�I0
x�2 = �1 − u2, u� 1;

0, u� 1.
� �28�

In particular, on this level of the approximation, the effective
mass m� /m=1 /g diverges at the critical interaction strength
Uc, indicating the transition to the localized state. The double
occupancy follows from the relation �18�:

d2 =
1

2
��I0

z� +
1

2
� = �

1 − u

4
, u� 1;

0, u� 1.� �29�

The angle  of the pseudospin rotation �26� can be written in
terms of d as

cos


2
= �1 − 2d2. �30�

Following Eq. �30�, the rotation of the pseudospin corre-
sponds to adjusting the average fraction d2 of doubly-
occupied sites.

Note that the single-site solution �28� and �29� for u�1
reproduces the result of the atomic limit tij =0. Due to the
fact that intersite correlations have been neglected the low-
energy physics of the Mott insulator is completely absent.
This shortcoming can be addressed by going beyond the lo-
cal approximation.

Our mean-field state has a finite expectation value �Ii
x�

�0 for u	1. However, according to Elitzure’s theorem, the
physical ground state requires �Ii

x�=0 because Ii
x is not a

gauge invariant operator. As we have argued in Sec. II C we
consider our mean-field state as an approximation to a rep-
resentative eigenstate in the enlarged Hilbert space. In this
light, we can still expect that reasonable approximations for
physical �gauge invariant� observables are obtained.

B. Cluster approximations

To improve over the local approximation we have studied
clusters with two or more sites. We briefly review the generic
differences. A particular example is discussed in the next
subsection. Most important is the fact that in finite spatial
dimensions the value of �Ii

x�2 and �Ii
xIj

x� with i� j are differ-
ent. In other words, intersite correlations are introduced.
Consequently, in accordance with previous studies,41,56 there
is a distinction between the quasiparticle weight Z and the
effective mass renormalization m /m� of the quasiparticles.

While in general the factor g=m /m� stays finite across the
Mott transition, the quasiparticle weight Z still vanishes for
U→Uc. The quasiparticle weight and the effective mass in
the mean-field theory follow from the form �23� of the
single-particle Green’s function. For a nearest-neighbor hop-
ping model they are given by

Z = 4�Ii
x�2 and

m

m�
= g = 4�Ii

xIj
x� ,

for nearest-neighbor pairs i , j. The distinction between g
and Z is now apparent in finite dimensions. More general, the
electronic self-energy obtains a k dependence which, in the
metallic phase at particle-hole symmetry, is of the form

���,k� = �1 + Z−1�� + � g

Z
− 1��k + . . .

for k near the Fermi surface defined by �k=0 and for small
�’s. This issue will again be discussed in Sec. V when we
consider the Schwinger boson mean-field theory in order to
access the low-lying excitations of the quantum Ising model.

In addition, the critical interaction strength for the Mott
transition is renormalized compared to the value of the local
approximation �27�. We find, however, that the exact value
depends on the choice of the cluster.

C. Deformation of Fermi surface

As an application of the cluster mean-field scheme, let us
now study the question how intersite correlations can change
the shape of the Fermi surface. Such an interaction-driven
deformation is easily described within the present scheme
when considering a generic dispersion with further-neighbor
hopping amplitudes. The deformation then results from a dif-
ferent renormalization of nonequivalent hopping amplitudes.
As an example, we study here a model on a two-dimensional
square lattice with nearest-neighbor hopping amplitude t and
next-nearest-neighbor hopping amplitude t�. The renormal-
ized quasiparticle dispersion is then given by

�k = − 2gtt�cos kx + cos ky� − 4gt�t� cos kx cos ky − �F.

Here, the renormalization factors are gt��� =4�Ii
xIj

x� with i and
j �next-�nearest neighbors. The parameter �F is determined to
satisfy the Landau-Luttinger sum rule for the Fermi surface
defined by �k=0. According to Eq. �22�, the auxiliary quan-
tum Ising model acquires the nearest-neighbor exchange

�t = 4t�
k,�

�cos kx + cos kz�nk�,

and a next-nearest-neighbor coupling

��t� = 8t��
k,�

cos kx cos kynk�.

We have considered a 2�2 cluster as shown in the inset of
Fig. 2 and have solved the self-consistency Eqs. �20� and
�22� for different values of U / t with a fixed ratio t� / t=−0.3.
Figure 2 shows � and �� as function of U / t. Note the differ-
ence in scale for � and ��. Figure 3�a� shows the quasiparti-
cle weight Z along with gt and gt�. As mentioned in the
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previous subsection, Z vanishes in the Mott insulator while gt
and gt� stay finite. On the metallic side, gt�	gt which means
that the Fermi surface is deformed toward the fully nested
surface with t�=0, as shown in Fig. 3�b�. A similar behavior
has been found in calculations which take antiferromagnetic
fluctuations into account.57 On the insulating side, gt��gt.
This can be expected since gt� /gt�J� /J��t� / t�2 in the Mott
insulator where J �J�� is the superexchange for �next-�nearest
neighbors. For U�Uc, the low-lying excitations are not
given by Landau quasiparticles since Z=0. The surface for
U=20t shown in panel �b� can be viewed as the Fermi sur-
face of a “hidden Fermi liquid”58 or as the spinon Fermi
surface of a gapless spin liquid.1 However, since this Fermi
surface is close to perfect nesting we expect that �residual�
interactions open a gap. Before we study the effect of such
residual interactions in Sev. VI in more detail, we present
another way of going beyond the local approximation in the
next section.

V. SCHWINGER BOSON THEORY

An alternative approach to go beyond the local approxi-
mation is the use of the Schwinger boson theory for the
quantum Ising model and we follow an essentially similar
line of thoughts as in Ref. 59. The bosonic representation

establishes also a connection to earlier slave-boson represen-
tations, see Appendix. Moreover, it allows us to take the
effect of quantum fluctuations into account and it yields the
low-lying excitations.

We introduce two sets of Bose creation and annihilation
operators xi

�†� and yi
�†� to represent the pseudospin algebra

Ii
+ = yi

†xi, Ii
− = xi

†yi, Ii
z = yi

†yi −
1

2
.

In order to obtain a faithful representation of the spin alge-
bra, these operators have to obey

xi
†xi + yi

†yi = 1.

In the Schwinger boson formulation, the pseudospin rotation
given in Eq. �26� translates to an unitary transformation of
the Bose creation and annihilation operators

�xi

yi
� =�cos



2
− sin



2

sin


2
cos


2
��ai

bi
� . �31�

The a and b bosons can be interpreted as the Schwinger

bosons of the rotated pseudospin Ĩi. Equally, using the rela-
tion �30�, we can specify the transformation �31� by the value
of d and in the following we denote the canonically trans-
formed Ising model by HB�d�.

A. Classical ground state

The result of the local approximation is reobtained by
assuming a product form of the wave function

�O� = �
i

ai
†�0� , �32�

and optimizing the energy

E�d� = �O�HB�d��O� ,

with respect to the parameter d. We recover again the
Gutzwiller result �28��. The state �32� is the classical ground
state of the transverse Ising model. We state here that this is
the point where in the KR functional integral representation
one stops if only the saddle point �without fluctuations
around it� is considered.

B. Role of fluctuations in three dimensions

The formalism developed so far offers a framework to
study the excitation spectrum of the transverse Ising model.
We show that these excitations lead to the incoherent one-
particle excitations of the Hubbard model �upper and lower
Hubbard bands�. Furthermore, quantum fluctuations renor-
malize the classical ground state obtained in the mean-field
approximation. In general, the role of fluctuations crucially
depends on the dimensionality of the system. Here we re-
strict our analysis to the three dimensional �cubic� lattice
where fluctuations around the classical ground state are small
for most parameters. Nevertheless, the finite dimensionality
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χ
/
t

0 5 10 15 20
0

0.05

0.1

0.15

χ
′
t′

/
t

t′/t = −0.3

χ

χ′

FIG. 2. The nearest-neighbor exchange �t and the next-nearest-
neighbor exchange ��t� of the auxiliary pseudospin model as func-
tion of U / t for t�=−0.3t. The inset shows the considered cluster.
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���
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�
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�� � �
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�

�

kxa

k
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a

Z
gt
gt′

U = 0
U = 10t
U = 20t

(a) t′/t = −0.3 (b)

FIG. 3. �Color online� �a� The quasiparticle weight Z and the
nearest-neighbor and next-nearest-neighbor hopping renormaliza-
tion factors gt and gt�, respectively, as function of U / t. �b� The
Fermi surface for different values of the interaction strength.
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reintroduced in our analysis causes interesting changes in the
nature of the Mott transition as compared to the infinite di-
mensional result. Our results are in agreement with previous
results based on the slave-rotor formalism.41

1. Effective Hamiltonian for fluctuations

Formally, the effective Hamiltonian is derived by expand-
ing HB�d� up to second order in the b bosons. The parameter
d of the unitary transformation is then determined by the
requirement that quadratic mixing terms in a and b of HB�d�
vanish. This yields again the condition �29�. The next step is
to let the a bosons condense and to replace the a operators by
unity. In momentum space the effective Hamiltonian then
reads

Heff =
Uc

4 �
k

Bk
†�

u2

2
�k + 1

u2

2
�k

u2

2
�k

u2

2
�k + 1�Bk, �33�

for u�1. For u�1 we find

Heff =
Uc

4 �
k

Bk
†�

1

2
�k + u

1

2
�k

1

2
�k

1

2
�k + u�Bk. �34�

We have introduced the operators Bk
�†� given by

Bk
† = �bk

†,b−k� and Bk = � bk

b−k
† � ,

as well as

�k = −
1

3�
i=1

3

cos�ki� .

The effective Hamiltonian for fluctuations, Eq. �33� and �34�,
is diagonalized by the following Bogoliubov transformation

� bk

b−k
† � = �cosh �k sinh �k

sinh �k cosh �k
�� �k

�−k
† � .

The mixing angle is given by

�k =
1

2
atanh� − min�1,u2��k

min�1,u2��k + 2 max�1,u�	 .

The �-operators describe the low-lying eigenmodes of the
transverse field Ising model and correspond to �gapped�
pseudospin-wave excitations. The spectrum of these auxil-
iary excitations and their relation to physical properties is
discussed in the next paragraph.

2. Pseudospin-wave mode and Mott-Hubbard gap

From the diagonalization of the effective Hamiltonian we
find the following pseudospin-wave spectrum

��k =
Uc

2 ��1 + u2�k, for u� 1,

�u2 + u�k, for u� 1,
� �35�

with an excitation gap �=���0�. The quantum criticality at
u=1 is reflected in the softening of the mode �35�. For u
�1, the jump �� in the chemical potential from hole to
particle doping amounts to twice the excitation gap,

�� = 2� = U�1 −
1

u
. �36�

The above pseudospin-mode corresponds to the gapped
charge excitation of the Mott insulator and Eq. �36� coincides
with the expression found for the Mott-Hubbard gap in the
Kotliar-Ruckenstein formulation.35,37 The band of the pseu-
dospin mode �35� is shown in Fig. 4�a� for different values of
the interaction strength u.

3. Renormalized ground state

Quantum fluctuations lead to a renormalization of the
ground-state energy EG

	�u�1� and EG
��u�1�. We find

EG
	

Ns
= −

Uc

8
�1 − u�2 −

Uc

8
�

BZ

d3k

4
3 �1 − �1 + u2�k� ,

EG
�

Ns
= −

U

8
�

BZ

d3k

4
3 �1 − �1 + �k/u� ,

where the integrals over the Brillouin zone �BZ� represent
quantum corrections to the result of the Gutzwiller approxi-
mation. Note that EG	0 for any finite u, meaning that the
trivial mean-field solution with g=�=0 is always higher in
energy for any finite u. This is in contrast to the single-site
mean-field approximation where the solution for u�1 coin-
cides with the atomic limit. The present scheme based on the
Schwinger boson representation of the pseudospin is analo-
gous to taking into account Gaussian fluctuations around the
mean-field transition without renormalizing the actual transi-
tion point.
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FIG. 4. �a� The band of pseudospin-wave excitations obtained in
the spin-wave analysis of the transverse Ising model in three dimen-
sions as function of u=U /Uc. �b� The inverse effective mass m /m�

and the quasiparticle weight Z as function of U /Uc. Note that at the
Mott transition u=1, Z vanishes in contrast to m /m�.
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4. Effective mass and quasiparticle weight in three dimensions

As in the cluster mean-field treatment above and in pre-
vious studies invoking slave rotors,41 we obtain that fluctua-
tions reintroduce intersite correlations beyond the mean-field
value. In particular, there is a distinction between the U de-
pendence of the quasiparticle weight and of the effective
mass renormalization of the quasiparticles, see Fig. 4�b�.
While the hopping renormalization factor g=m /m� stays fi-
nite across the Mott transition, the quasiparticle weight Z still
vanishes for u→1. In the insulating phase, the effective mass
is obtained from

g �
m

m�
= −� d������

�/D

�1 +
1

u
�/D

�
Uc

2U
� d��������/D�2 =

Uc

12U
,

where D=6t is half of the bandwidth and the second line
holds in the limit u 1. Thus, similar to the cluster mean-
field calculation, the pseudospin-wave analysis captures the
energy scale of the superexchange J=4t2 /U for large U and
m /m�=J� / �8t� is finite due to virtual hopping processes
which keep the number of doubly occupied sites small but
finite. It is interesting to note that this value is the same as in
the uniform resonating-valence-bond �u-RVB� phase of the
Heisenberg model HS=J��i,j�Si ·S j which is the strong-
coupling limit of the low-energy sector of the Hubbard
model at half-filling. The u-RVB phase is obtained by a uni-
form spinon mean-field ansatz for a single real Hubbard-
Stratonovich field � 
given by Eq. �22��1

JSi · S j → −
J�

8 �
�

�f i�
† f j� + h.c.� ,

which yields the same effective mass �m /m��u-RVB=J� / �8t�.
The transition from a metal to a gapless spin liquid in frus-
trated geometries has recently been discussed by several
authors.60–66

5. Spectral one-particle density

We now turn to the discussion of how the auxiliary pseu-
dospin excitations affect the physical excitation spectrum. To
this end we calculate the spectral one-particle density A����.
We start by writing A���� in the Lehmann representation

A���� = �
n


��0�c0��n��2��� − �n0� + ��0�c0�
† �n��2��� + �n0�� .

where �n� denotes an eigenstate of the full Hamiltonian with
energy En and �nm=En−Em. In the slave-spin method used
here, the true eigenstates are approximated by the mean-field
eigenstates obtained in the pseudospin-wave analysis. We
then have to calculate matrix elements of the form
�0�I0

x fq��n�. The details of the calculation are lengthy but
straightforward. Here we present the main results.

The spectral weight contains a coherent quasiparticle sec-
tor A�

coh��� as well as an incoherent contribution A�
inc���. We

find that the coherent contribution is given by

A�
coh��� =

Z

g
����/g� .

Note that A��0�=A�
coh�0��Z /g gradually vanishes when ap-

proaching the Mott insulator, in contrast to the infinite di-
mensional result. In the metallic phase u�1, the incoherent
contribution is dominated by

A�
inc��� �

4D

Uc
�

0

!

d����������
D

u2�4�� − g��2

Uc
2 − 1�	 , �−	�	 �+ + gD;

���D

u2�4�� + g��2

Uc
2 − 1�	 , − �+ − gD	�	 �−;

0, else;
� �37�

where ��=
Uc

2
�1�u2 denote the edges of the excitation spectrum. On the other hand, in the insulating phase u�1, the

coherent part vanishes A�
coh���=0 and we find

A���� = A�
inc��� =

4D

Uc
�

0

!

d����������
D

u
�4�� − g��2

Uc
2 − u2�	 , �−	�	 �+ + gD;

���D

u
�4�� + g��2

Uc
2 − u2�	 , − �+ − gD	�	 �−;

0, else;
� �38�
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where ��= U
2
�1�1 /u. The spectral density is shown in Fig.

5 for different values of the interaction strength. The gapped
mode �35� found in the transverse Ising model leads to the
incoherent weight around �max�Uc ,U� /2 in the spectral
density.37 In the metallic phase, we find the characteristic
three peak structure with preformed Hubbard bands centered
at ����Uc /2 and a coherent Gutzwiller band at ���0.
The Gutzwiller band disappears at u=1 and the Hubbard
bands touch at ��=0. From the expression �38� we find that
in the large U limit the Hubbard bands assume a constant
width of WHB=Uc /2�8t and are separated by U. This is
consistent with the large U expansion of the jump in the
chemical potential �36� and the general expectation that both
an added hole or an added double occupancy are mobile with
an energy −WHB /2

��� U −
Uc

2
� U − WHB.

The reduction in the bandwidth WHB of the upper �or lower�
Hubbard band as compared to the noninteracting bandwidth
W=2D=12t is in qualitative agreement with the retraceable-
path approximation for a single hole doped into an infinite-U
Mott insulator.67

6. One-particle sum rule and fluctuation regime

To estimate the validity of the mean field plus spin-wave
calculation, we compare the fluctuations with the magnitude
of the order parameter and define ufl through the condition

1

1 + 6��
�0,i�

��I0
x�Ii

x� + ���I0
x�2�	 = �I0

x�2�ufl.

For the cubic lattice considered here we obtain ufl�0.9,
hence, for u�1�0.1 the fluctuation induced corrections to
the mean-field result are important and the validity of the
above analysis is limited. In particular, the approximative
nature of our treatment of the pseudospin problem violates
�Ii

x�2=1 /4 and the spectral weight fails to be properly nor-
malized. As shown in Fig. 6, the one-particle sum rule

� d�A���� = 1,

is fulfilled within 10%–12%. The failure predominantly
manifests itself in the fluctuation regime, however. Viola-
tions of sum rules are a known shortcoming of the Gaussian
approximation. We expect that some of these inconsistencies
can be cured by taking into account appropriate mode-mode
couplings.

VI. ROLE OF THE CONSTRAINT

So far, we have discussed various aspects of the mean-
field approximation where the eigenfunctions ���= ��I��� f�
of the slave-spin Hamiltonian �7� in the enlarged Hilbert
space have been approximated by product states in pseu-
dospin and pseudofermion degrees of freedom and we have
not paid attention on the relation �5�. There is an obvious
shortcoming in this treatment: the expectation value �Ii

z�
+1 /2 is in general not equal to ��ni−1�2� where ni
=��f i�

† f i� is the local pseudofermion density. But since both
operators are gauge invariant and the expectation values are
equal for the physical state by construction we conclude that
this relation should in fact hold for all eigenstates ��m� of H�

��m�Ii
z��m� +

1

2
= ��m��ni − 1�2��m� . �39�

Therefore, we expect to obtain a better approximation of an
eigenstate of H� by enforcing the relation �39� for mean-field
states. This can be achieved by the usual Lagrange multiplier
method. In this way, we can access a larger class of correla-
tions in the mean-field approximation and a prominent ex-
ample missed so far is magnetism. In the following we dis-
cuss two possibilities to satisfy �39� for mean-field states.
The first approach relies on the presence of a finite staggered
magnetization "s and is therefore expected to be of relevance
for magnetically unfrustrated models. The second approach
involves an iteration of the slave-spin approximation in the
paramagnetic sector and its natural applications are therefore
models where magnetic order is fully frustrated. In this brief
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FIG. 5. �Color online� The contour plot shows the one-particle
spectral density A���� with the coherent Gutzwiller and the �pre-
formed� Hubbard bands as function of energy � / t and interaction
strength u. On the right-hand side, A���� is shown for fixed values
of u in the metallic and the insulating phase.
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overview, we do not analyze weakly frustrated systems such
as the t− t� model discussed in Sec. IV C. For these models
the situation is more complex since aspects such as the Fermi
surface deformation are likely to play a role as well.

We follow a standard procedure to enforce the relation
�39� for mean-field states by adding a term

# = −
1

2�
i

$i�Ii
z +

1

2
− �ni − 1�2	 , �40�

to the slave-spin Hamiltonian �7�. One then seeks for a sta-
tionary solution with respect to the Lagrange multiplier $i

��H� + #�
�$i

= 0. �41�

A. Néel state in unfrustrated systems

On a bipartite lattice a Néel-ordered state is usually a
leading instability and in the following we explore the pos-
sibility that the term �40� triggers this instability. Further-
more, introducing an order parameter for the staggered mag-
netization "s allows to satisfy the constraint �5� on average,
see also Eq. �39�. Hence, we decouple �40� in the antiferro-
magnetic channel by writing �at half-filling�

ni↑ni↓ → −
"i

2
�ni↑ − ni↓� +

1

2
ni −

1 − "i
2

4
, �42�

where "i= �ni↑−ni↓� and we assume "i="s if i belongs to the
A sublattice and "i=−"s for i on the B sublattice. Further-
more, we seek for a translational invariant state with $i=$.
In addition to the slave-spin self-consistency �20� and �22�
there are two more self-consistency equations in order to
determine the parameters g, �, $, and "s

g = 4�Ii
xIj

x� ,

� = 4�
�

��f i�
† f j�� f + c.c� ,

"s
2

2
= − �Ii

z� , �43�

1

$
= 2�

−zt

�F=0

d�
�����

�4g2�2 + $2"s
2

. �44�

Equation �43� is just the average constraint using the decou-
pling �42� and �44� is the gap equation for the pseudofermion
problem.

We have solved these equations for different values of
U / t on a square lattice with nearest-neighbor hopping t. The
result for "s is summarized in Fig. 7 for the local slave-spin
approximation �Sec. IV A� and with fluctuations �Sec. V B�.
Also shown is the result obtained in the standard Hartree-
Fock �HF� mean-field theory applied to the original model
�1�. We find a first-order transition in the staggered magneti-
zation both in the local approximation and with the inclusion
of fluctuations in the pseudospin-wave sector. Moreover, for

a finite range of U / t, the self-consistency equations have two
distinct solutions for "s which both locally minimize the en-
ergy. One solution corresponds to a “low-"s” phase of delo-
calized character �“Slater”� the other to a “high-"s” phase of
localized character �“Mott-Heisenberg”�. �However, the na-
ive decoupling �42� should be taken with care, in particular
for larger values of U / t.�

As seen in Fig. 7, the present approach coincides with the
pure HF of the original model only in lowest order in U / t,
but clearly differs in higher orders. These pronounced differ-
ences are attributed to a “positive feedback effect” between
the staggered magnetization "s and the hopping renormaliza-
tion factor g which, formally, enters by the averaged con-
straint �43�. In the low-"s phase, the system optimizes the
kinetic energy by sustaining a weak staggered magnetization
but a small effective mass �large g�. "s is therefore smaller
than in HF. On the other hand, the high-"s solution results
from the optimization of the potential energy: the physical
mechanism behind it is the fact that an enhanced effective
mass �localization� favors the formation of local magnetic
moments �singly occupied sites� which allows to minimize
the potential energy cost. "s is therefore larger compared
with the HF result.

Including fluctuations in the slave-spin problem reduces
the regime where the high-"s solution is stable. It is likely
that the quantum fluctuations in "s, which have not been
considered here, will reduce the stability regime even more
and it is an open problem if the first-order transition survives
once we go beyond the mean-field decoupling �42�. �We note
that in dynamical mean-field theory on the infinite dimen-
sional hypercubic lattice a crossover is observed.�68 Further-
more, such fluctuations lead to an overall reduction in the
staggered moment also in the large U / t limit. From spin-
wave theory69 and Monte Carlo simulations70 of the spin-1/2
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FIG. 7. �Color online� The staggered magnetization "s at T=0
for the square lattice as function of the interaction strength U / t
calculated using the local slave-spin approximation of Sec. IV A
�dashed dotted� and with fluctuation corrections as discussed in Sec.
V B �solid�. For comparison we also show the result obtained in the
Hartree-Fock mean-field theory �dashed�. In the slave-spin calcula-
tion there is a finite range of U / t where there exists two solutions
for "s which corresponds to a �local� minima of the energy.
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Heisenberg model on the square lattice it is known that the
sublattice magnetization is only around 60% of its classical
value.

B. Iterated slave-spin scheme for full frustration

We now discuss an alternative way to satisfy the con-
straint on average which does not rely on the presence of a
magnetic order parameter. This scheme is therefore more
likely to play a role in fully frustrated systems where mag-
netic order is suppressed. Also in this approach we find a
first-order transition between an itinerant and a localized
phase as function of U / t.

The term �40� introduces an onsite interaction of strength
$ �we assume $i=$� for the f fermions in the mean-field
treatment and Hf takes the form of a Hubbard model with
renormalized parameters: effective hopping gItij and onsite
interaction $. Let us again use the slave-spin mean-field
theory to treat this renormalized model: following Sec. II we
introduce an additional set of pseudofermions hi

�†� and
pseudopins Ki to represent the f fermions and the eigenstates
of Hf are approximated as product states �� f�= ��K���h�. In
order to satisfy the original constraint between the f fermions
and the I spins on average, we can relax the constraint be-
tween the h fermions and the K spins. The reason is that the
relation �18� for the �h ,K� pair gives

���
�

f i�
† f i� − 1�2� � �Ki

z� +
1

2
.

But from �41� it follows that �Ki
z�= �Ii

z� and the above relation
is just the average constraint for the �f ,I� pair. Equation �41�
also implies that the ratio of the transverse field to the ex-
change coupling is the same for the I and the K model and
that gI=gK�g. As a result, we find that $=U /2. In the local
approximation for the transverse field Ising model, a non-
trivial solution exists only for v�1 where v=4u / �3�3�. The
kinetic energy is renormalized by g2 where for v�1

g =
1 + 2 cos��/3�

3
,

with �=arccos�1−2v2� and g=0 otherwise. We thus find a
first-order transition at a reduced critical interaction strength
4Uc / �3�3� between a paramagnetic metal and an insulator.

We note here that a paramagnetic first-order transition at
T=0 has recently been reported66 for the single-band Hub-
bard model on the �highly frustrated� triangular lattice. These
calculations revealed a first-order transition from a paramag-
netic metal to a paramagnetic insulator. Moreover, a second
first-order transition at larger values of U / t between the para-
magnetic metal and the 120° Néel-ordered state was found.

VII. CONCLUSIONS

We have reviewed a slave-particle formulation for
strongly interacting Fermi systems which can be considered
as a minimal formulation of previous representations. Our
approach is based on auxiliary pseudospin variables display-
ing a local Z2 gauge freedom. They refer to the local charge

modulo two. The simplicity of the representation allows to
exactly solve the noninteracting model and to gain insights
into the artificial local symmetry introduced by enlarging the
Hilbert space. For the interacting model, the main focus so
far has been the investigation of the corresponding mean-
field approximation. We have proposed an interpretation of
the mean-field decoupling in terms of approximating a “rep-
resentative eigenstate” in the enlarged Hilbert space rather
than the physical eigenstate. In this light, our mean-field re-
sults do not contradict Elitzur’s theorem and we have argued
that reasonable results for gauge invariant observables can be
obtained.

The mean-field theory has been applied to various aspects
related to the interaction-driven Mott transition in the single-
band Hubbard model. The role of intersite correlations
present in finite dimensions has been discussed in a cluster
approximation and we have found that intersite correlations
deform the Fermi surface toward the fully nested one. By
including quantum fluctuations in the auxiliary Ising model,
we have analytically calculated the single-particle density of
state and have elaborated the connection between the
�gapped� pseudospin-wave excitations and the �preformed�
Hubbard bands of the original model.

We have also commented on the importance to enforce an
averaged constraint which has to be satisfied by all eigen-
states in the enlarged Hilbert space. In this way it is also
possible to include magnetic correlations. For the nearest-
neighbor hopping model on the square lattice we have found
a first-order transition between a phase with a low and high
value of the staggered magnetization.

There are many more open problems left for future stud-
ies and we hope to stimulate some further investigations. For
example, an extension of the present approach away from
half-filling is highly desirable; in particular in view of poten-
tial applications of the current formalism to inhomogeneous
systems �such as artificially structured correlated
materials33,34 or cold atomic gases in optical traps�. Further-
more, we encourage an investigation of possible “flux pat-
terns” �and its excitations� associated with the local Z2 gauge
freedom on the mean-field level. In order to go beyond the
mean-field description it is an interesting problem to study
the Z2 lattice gauge theory coupled to the “matter field” of
the pseudofermions as obtained from the present approach.
Moreover, such a study could also help to make contact with
a previously considered Z2 gauge theory for strongly corre-
lated electrons22 and could add much to our understanding of
the present formulation and its connection to various other
slave-particle representations.
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APPENDIX: RELATION TO THE FOUR BOSON AND THE
TWO-SPIN FORMULATION

In this we relate our approach to the KR four boson for-
mulation for a one-band model.26 An equivalent representa-
tion is also obtained by using two slave spins introduced by
de’Medici and co-workers in Ref. 43. We show that our rep-
resentation is obtained by restricting the action of the two
aforementioned slave spins to the particle-hole and spin-�
symmetric subspace.

In the following, it is sufficient to focus on the local Hil-
bert space. Kotliar and Ruckenstein introduced four Bose
creation and annihilation operators e�†�, p�

�†�, and d�†� as well
as two Fermi operators f�

�†� to represent the local occupation
number states as

�e� = e†�%�, ��� = p�
† f�

† �%�, �d� = d†f↑
†f↓

†�%� ,

where �%� is a fake vacuum state. The constraints to project
out unphysical states are given by

e†e + �
�

p�
† p� + d†d = 1, �A1�

d†d + p�
† p� = f�

† f�. �A2�

The above constraints also imply that

d†d = f↑
†f↑f↓

†f↓, �A3�

which is analog to Eq. �5�. The physical annihilation and
creation operators can be represented as

c� = z�f�, c�
† = z�

† f�
† , �A4�

where the simplest form for the z operators is

z� = p�̄
†d + e†p�, z�

† = d†p�̄ + p�
†e .

�In order to reproduce the correct noninteracting limit in the
mean-field theory, a modified form was introduced.�26 The
constraint �A1� can be resolved by introducing slave-spin
variables43 according to

S�
+ = z�

† , S�
− = z�, S�

z +
1

2
= d†d + p�

† p�.

The constraint �A2� then reads

S�
z +

1

2
= f�

† f�. �A5�

We note that the slave-spin representation of Ref. 43 differs
from the one we have used in this paper since S�

z +1 /2 refers
to the presence �S�

z =+1 /2� or absence �S�
z =−1 /2� of a

spin-� electron. In contrast, in our method, only one slave-
spin I is introduced and the Iz value refers to the total local
charge modulo two. In the two slave-spin method, the physi-
cal annihilation operator was represented as

c� = 
S�
− + �n�S�

+�f�, �A6�

which in the physical subspace is equivalent to Eq. �A4�. The
parameter

�n� =
2

�n�2 − n�
− 1,

was adjusted such that the correct U=0 limit at particle den-
sity n is recovered.56 In particular, for n=1, the physical
annihilation operator was written in the form

c� = 2S�
x f�. �A7�

Since �2S�
x �2=1 it follows that for n=1 the canonical anti-

commutation relation is preserved in the mean-field decou-
pling, similar to Eq. �24�. However, for n�1, this property is
lost. It seems that it is generally difficult to find a represen-
tation which preserves the anticommutation relations and re-
produces the correct noninteracting limit away from half-
filling.

The connection to our reduced slave-spin representation
at n=1 is achieved by restricting the slave-spin operators to
the two-dimensional particle-hole and spin-� symmetric sub-
space spanned by

�− � = �0,1�, �+ � =
1
�2

��1,1� + �− 1,1�� .

Here, we have introduced the triplet states �mz ,1� �mz

=0,�1� of the total spin S� =S�↑+S�↓. The states �� � can be
viewed as the eigenstates of a pseudospin operator Iz, see Eq.
�2�. This establishes the connection between the different
representations.
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